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Abstract. The effect of the solidification transition on the edge phenomena of a two-
dimensional (2D) electron system in a magnetic field is studied in the classical and quantum
melting regimes. It is shown that in the pure solid system(T → 0), instead of the conventional
edge magnetoplasmons (EMP) which are observed in the liquid state, new magneto-Rayleigh
waves (MRW) can propagate along the solid boundary and these have much lower frequencies:
ωMRW � ωEMP . If at a finite temperatureT < Tc the solidification of the edge is not
completed due to the smooth density profile, the EMP and the new boundary displacement
waves can propagate in a thin electron liquid strip surrounding the 2D solid. The properties of
these waves are affected by the solid boundary which may provide an alternative approach for
probing the Wigner transition.

1. Introduction

In the presence of a strong magnetic field (B) oriented normally, the edge phenomena
of the two-dimensional (2D) electron liquid have been studied intensively because of the
unique properties of such plasma oscillations, which are confined to the boundary [1–3], and
of their relationship to such fundamental issues as the quantum Hall effect (QHE) [4, 5].
Conventional edge magnetoplasmons (EMP) as well as the new multiple acoustic excitations
[6, 7] and the recently observed boundary displacement waves coupled with EMP [8, 9]
are very important for the understanding of the edge current states of the QHE, since they
relate to a transition strip where the properties of the 2D electron system change drastically.

Another fundamental issue studied in 2D electron systems is the Wigner solid. Yet the
edge waves of such a 2D electron solid have not been analysed. In the present paper we
show that a variety of waves, some of which are of a new kind, can propagate along the
boundary of a 2D electron solid in the presence of a magnetic field.

The Wigner solid state of a 2D electron gas was first observed experimentally for
electrons on the surface (SE) of superfluid helium [10]. The system is primarily in the
classical melting regime, with the liquid–solid transition being characterized by the critical
value of the classical plasma parameter

0m = e2√πn0

kBTm
' 140.

HereTm is the melting temperature, andn0 is the mean electron density. The edge of the
system is usually fixed by the external field of the guard electrodes. As shown in figure 1,
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Figure 1. A sketch of the electron density profilen(x) and the phase separation at the edge
below the solidification transition.

in this case the density profile at the edgen(x) is smoothed over a distanced (n(x)→ n0

at x � d) which is of the same order of magnitude as the distance between the helium
surface and the bottom electrode,H . Below the transition point,T < Tm, the electrons
which are close enough to the edge do not satisfy the Wigner solid condition0 > 0m and
should be in the liquid state. This means that the sharp edge of a solid, placed atx = xs(T )
(herexs is the solution of the equationn(x) = nm, and

√
nm = kBT 0m/(√πe2)), should

be surrounded by a thin strip of electron liquid (0< x < xs). We will see that in this
case two kinds of motion are possible due to a significant difference between the excitation
frequencies. One motion is just the fluid oscillations within the surrounding strip. Another
motion involves the displacements of the solid boundary.

In section 2 we study the idealized case of a 2D Wigner solid with a sharp edge which is
important for the analysis of the excitation spectrum of a real system. The Wigner transition
substantially changes the bulk excitation spectrum of a 2D electron system in a magnetic
field. In addition to the high-frequency mode withω = ω+(k) > ωc (here ωc is the
cyclotron frequency), a low-frequency bulk modeω = ω−(k) ∝ 1/B [11] appears, which
crucially affects the propagation of edge waves. For instance, the conventional EMP cannot
propagate along the edge of a pure Wigner solid, since their frequencies are within the bulk
excitation spectrum. The only possible solution in this case is the magneto-Rayleigh wave
(MRW) whose frequency has the sameB-dependence, but is much lower in frequency than
the EMP.

For a real density profile (the electron concentration smoothly decreases towards the
edge) at a non-zero temperature the edge of the 2D Wigner solid should be surrounded by
a narrow strip of liquid. In this case the boundary displacement wave (BDW) of the liquid
strip (section 3) and the EMP (section 4) can propagate along the wet edge of the system.
The appearance of the liquid–solid interface at the edge of the 2D electron system changes
the conditions for the wave propagation on both sides of the interface, which can be used as
an experimental tool to study the Wigner solid. Furthermore, the order of phase separation
at the edge inverts if the electron system is going from the classical melting regime to the
quantum regime, and vice versa. This effect can also be used for probing the 2D electron
solid.
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2. The magneto-Rayleigh waves

As is clearly seen in figure 1, the 2D electron solid has a sharp edge for temperatures just
below the transition point (T < Tm). It is obvious that in the case of a movable boundary
(electrons are confined by means of the electric field of the guard electrodes) the thin liquid
strip cannot substantially affect the edge excitations of the solid. Therefore, to simplify
the problem we will first neglect the effect of the thin liquid strip on the solid motion and
choose the origin of thex-axis to be at the edge of the solid (xs ≡ 0).

According to [11–13], the equations of motion of a Wigner solid are practically the
same for the SE on helium and 2D electrons in a semiconductor system. Therefore, to
avoid unimportant details of a particular system, we will generally express our results in
terms of the frequencies of the basic modes of a 2D electron solid.

Any elastic wave propagating along the solid boundary should be a solution of the bulk
equations of motion

− ω2uk + Dkuk − iω[ωc × uk] = 0 (1)

where the electron displacementsu from the equilibrium lattice positionsR are taken to
be a monochromatic waveu = uk exp(ik ·R− iωt); ωc (ωc = eB/mc; m is the electron
mass) is directed along the magnetic field;D

αβ

k is the dynamical matrix which in the long-
wavelength limit can be expressed in terms of the transverse (p = t) and longitudinal
(p = `) mode frequenciesωp:

D
αβ

k = ω2
t (k)δαβ + [ω2

`(k)− ω2
t (k)]kαkβ/k

2.

The dispersion equation which follows from equation (1) can be written in the form
(ω2 − ω2

−(k))(ω
2 − ω2

+(k)) = 0, whereω±(k) are the bulk magnetoplasmons of a 2D
electron solid [11]. The properties of these modes are well known. The most important
one is thatω−(k) decreases with increasing magnetic fieldB and in the limit of strong
fields is characterized by the asymptotic behaviourω−(k) ∼= ω`(k)ωt (k)/ωc. It should be
emphasized thatω−(k) is much lower than typical EMP frequencies of a 2D electron liquid
which are usually of the order ofω2

`(k)/ωc.
We will confine ourselves to the limiting casea/2< H � |ky |−1 (herea is the lattice

spacing) which corresponds to the real experimental situation for SE on helium and allows us
to use boundary conditions of elasticity theory. In this case both longitudinal and transverse
phonons are of acoustic nature [12, 13]:ωp(k) = cpk, where

c2
`
∼= (4πe2n0H/m)(1− 0.09a/H)

c2
t
∼= 0.138e2√πn0/m.

We search for solutions to equation (1) which are confined to the boundary, and therefore
we takek = {is|ky |, ky}. Equation (1) yields two possible solutions for the functions(ω):

s± =
{

1− ω2

2ω2
`ω

2
t

[ω2
` + ω2

t ∓ (ω2
` − ω2

t )W ]

}1/2

(2)

where we have introduced the notation

W =
[

1+ 4ω2
`ω

2
t ω

2
c

ω2(ω2
` − ω2

t )
2

]1/2

whereωt = ct |ky | andω` = c`|ky |. To satisfy the boundary conditions, both solutionss±
should contribute to the lattice displacements:

u(x, y) = {A+ exp(−s+|ky |x)+A− exp(−s−|ky |x)} exp(ikyy) (3)
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where we used the continuum approximation. According to equation (1), the components
A
(α)
± of the vectorsA± are related as follows:

A
(x)
± = Q±(ω)A(y)± Q±(ω) = (ω2

` − ω2
t )s±(ω)− ωωc sgn{kyB}
ω2− ω2

t + ω2
`s

2±(ω)
. (4)

The necessary condition for the edge wave to be exponentially damped towards the interior
of the solid is that the frequency of the wave should be lower than the bulk spectrum
frequency (ω < ω−(|ky |)).

The relation between the frequency andky is found by making use of the appropriate
boundary conditions. At the free boundary the stress tensor satisfiesσ

αy
str (x → 0) = 0.

According to 2D elasticity theory, these boundary conditions can be written as follows:

∂u(y)

∂x
+ ∂u

(x)

∂y
= 0 (1− 2δ)

∂u(y)

∂y
+ ∂u

(x)

∂x
= 0 (5)

whereδ = c2
t /c

2
` . It is interesting to note that, if we impose the rigid boundary condition at

the edge,u(x)(x → 0) = 0 (typical for the EMP), instead of the second boundary condition
of equation (5), the final dispersion equations+(ω)Q−(ω) = s−(ω)Q+(ω) will have no
low-frequency solution at all.

Figure 2. The MRW spectrum versus the magnetic field (in units ofωc/ω`) for three values of
the ratioδ = c2

t /c
2
` .

The movable boundary conditions of equation (5), which are more suitable for the
system confined by means of the external field of the guard electrodes, yield the following
dispersion equation:

(1− 2δ +Q−Q+)(s+ − s−) = (1− 2δ + s−s+)(Q+ −Q−). (6)

In the zero-magnetic-field limit (ωc = 0) the solution to this equation is just the Rayleigh
wave of a 2D solid:ω/ωt → 0.955 atδ → 0. For weak and intermediate magnetic fields
the frequency of the edge MRW is shown in figure 2 as a function of the magnetic field. It
is clearly seen that the effect of the magnetic field on the spectrum of the MRW increases
(in units ofωc/ω`) with decreasingδ (increasingH ).
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Figure 3. The solution of equation (7) (solid curve) and the asymptoteζ = 2
√
δ (dashed line)

versus the ratioct /c`.

In the most interesting limiting case of strong magnetic fieldsωc � ω` the field
dependence of the MRW spectrum is of the formω = ζω`ωt/ωc, whereζ is the solution
of the following transformed equation:

sgn{kyB}
√
δ(
√

1+ ζ −
√

1− ζ )[(1− δ)2− ζ 2/2] = (
√

1− ζ 2− δ)ζ 2/2. (7)

As a result of the transformation a false solutionζ = 1− δ was introduced which is just
the root of the denominator ofQ−(ω) and therefore should be dismissed. In the limit of
small δ � 1, which is quite usual for a 2D electron solid, the real solution of equation
(7) represents the MRW and can be found analytically:ζ ∼= 2

√
δ. This result satisfies the

above-mentioned conditionω < ω−(k) necessary for the displacements to be localized at
the edge. Formally, at largerδ the solution deviates from this asymptote as is shown in
figure 3 and vanishes atδ→ 1/2, with the 2D Poisson ratio 1− 2δ→ 0.

The dispersion curve of the 2D MRW can be plotted in a rather general way as shown
in figure 4 by the use of the universal wave-vector parameterkc = ωc/c` ∝ B. In the
strong-field limit (kc � ky), according to figure 4, we haveω ∝ k2

y . For largerky the effect
of the magnetic field decreases and finally the wave attains the acoustic spectrumω ∝ ky .

It should be emphasized that for givenB the low-frequency MRW solution of equation
(7) exists only for one definite direction of wave propagation (sgn{kyB} = +). This
behaviour is typical for EMP waves in a 2D electron liquid. Still the frequency of the
MRW is much lower than that of conventional EMP and BDW. This means that the solid
motion cannot follow the high-frequency oscillations of the EMP and BDW propagating
along the liquid strip which surrounds the solid boundary. In other words, when the liquid
motion is considered, the liquid–solid interface can be treated as a wall.

Regarding the damping of the MRW, we expect that it will be determined by the
conductivity of the electrons in a particular system, since in the long-wavelength limit the
electron motion penetrates deep into the ‘bulk’ of the 2D solid, and any microscopic defect
at the edge should not seriously affect the wave propagation. Therefore the conditions
for the observation of the MRW are the same as those for the observation of the ‘bulk’
transverse mode, at least in the intermediate-magnetic-field regime (ωc ∼ ω`). The required
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Figure 4. The dispersion curve of the MRW in terms of the field-dependent wave-vector
parameterkc = ωc/c`.

smoothness of the edge (the size of the defectLd � k−1
y ) and the absence of static defects

at the edge are usually achieved for SE or ions bound to the surface of superfluid helium.
In such systems very large mean free paths have been measured for edge wave propagation.

3. The boundary displacement waves of the wet edge

As follows from the analysis presented in the introduction, the BDW and EMP resonances
do not disappear at the Wigner solid transition in the classical melting domain because of
the liquid strip which wets the edge of the 2D electron solid.

Two kinds of collective excitation are possible within the liquid strip. The EMP is a
density wave confined to the rigid edge of a 2D electron system; the current component in
thex-direction is assumed to be zero at the edge. The BDW is analogous (not equivalent!) to
the capillary wave of an ordinary liquid. In general these motions are coupled in a sort of
in- and out-of-phase oscillation of the edge charges [8, 9]. The coupling is strong if the
frequencies of these modes are close enough, which is the case for a sharp density profile
at the edge of an unscreened Coulomb system. For a rather smooth density profile, EMP
and BDW have substantially different frequencies [9]. Therefore an independent treatment
of these modes in the strip can be considered as a reasonable approximation. Since the
EMP in a strip geometry were studied theoretically [3] we will confine ourselves primarily
to properties of the BDW.

First we will use a model approximation in which a liquid strip of a constant density
n0 and of a widthd is bound to a stiff wall of the solid phase. For a usual liquid bound
to a wall we could expect a considerable reduction of the excitation frequency in the long-
wavelength limit (|ky |d � 1) described by the factor

√
tanh(|ky |d). But this is not the case

for BDW in the strong-magnetic-field limit.
In the frequency range beyond the typical EMP frequencies, the 2D electron system

can be treated as an incompressible electron liquid: div(V ) = 0 with the velocity field
V = ∇ϕ, whereϕ is the hydrodynamic potential of the liquid. It should be noted that
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there are no modes in the bulk of the incompressible liquid. We use the Euler equation

iωV (y) = 1

mn0

∂9

∂y
+ sgn{B}ωcV (x) (8)

where9 = p + en08ξ ; p is the liquid pressure;8ξ is the perturbation of the electrical
potential caused by the boundary displacementsξ(y). The continuity condition for the
pressure at the edge gives the effective boundary condition9(x → 0) = en08ξ(x → 0) ≡
αe2n2

0ξ , whereα is a geometrical factor of the order of one [9].
The boundary conditions for the velocity field are quite usual:V (x)(x → 0) = −iωξ ,

andV (x)(x → d) = 0. The first one is the free boundary condition, while the second one is
the condition at a ‘wall’. In this case the dispersion equation which follows from equation
(8) can be written as

ω[ω + sgn{Bky}ωc tanh(|ky |d)] = ω2
0(ky) tanh(|ky |d) (9)

whereω2
0(ky) = α(e2/m)n0|ky |. For ky > 0 equation (10) has only one physically accept-

able solution:

ω = 1

2

[√
ω2
c + 4ω2

0(ky) coth(|ky |d)− sgn{Bky}ωc
]

tanh(|ky |d) (10)

which for sgn{Bky} = + represents the low-frequency BDW. In the zero-magnetic-field
limit the frequency of this wave has the typicalkyd-dependence:ω ' ω0(ky)

√
tanh(|ky |d),

while in the strong-field limit we still haveω ' ω2
0/ωc. Yet to achieve this limiting

behaviour, much stronger fields are necessary:ωc � ω0(ky)
√

coth(|ky |d).
In a real system the liquid strip is not of constant density. Therefore the previous

result (that the BDW frequency is independent ofd for strong fields) cannot be applied
directly to the case of a real liquid density profile. Still there are some hints which show
that qualitatively this behaviour of the BDW might remain ifξ � d: for a narrow strip
p ≈ 0 and the Euler equation becomes independent ofn0, while for an arbitrary density
profile8ξ(0) still has the formαn0eξ , independently of the phase state of the entire electron
system.

4. The EMP affected by the Wigner solid boundary

For the classical melting regimethe phase order at the edge is shown in figure 1. It should
be noted that usually the density perturbations of conventional EMP are spread over the
whole density profile transition width 0< x 6 d. The appearance of the solid boundary
within this width (xs < d ) does not allow the density perturbations to appear atx > xs due
to the properties of the MRW discussed above. Indeed, we must impose the ‘wall’ condition
V (x)(x → d) = 0 at the solid boundary; otherwise we would force the solid boundary to
oscillate with a high frequencyω � ωMRW . This implies that the density perturbations are
confined to the strip 0< x < xs(T ) which narrows with freezing, and the limitxs � d can
be easily achieved. This effect results in a decrease of the spectrum of the EMP, since it is
proportional to the Hall conductivity of the strip,σyx ∝ nm(T ).

Another important consequence of the stiff bulk area appearance is that a new EMP
wave can propagate in the opposite (!) direction along the liquid–solid interface, since the
interface can be considered as a rigid wall for typical EMP frequencies. The liquid density
in the strip is not constant. Using the results of reference [3] we find that the spectrum of
this mode can be written as

ω ≈ 2kyσ
(0)
yx

nm(T )

n0
F(d/H) (11)
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whereF(d/H) is a function of order one [3]. The observation of waves propagating in
the opposite direction can be an additional proof of the solidification transition in the 2D
electron system.

It should be noted that both EMP and BDW propagation along the liquid strip should
crucially depend on the viscosity of the electron liquid, since the boundary condition
V (y)(x → d) = 0 in this case may induce a strong damping of the edge waves. In
the same way the appearance of the liquid-crystal-like phase [14] would also affect these
waves.

The quantum melting regime.In semiconductors the 2D electron system, due to its
higher electron density, is primarily in the quantum melting regime: the Fermi energy
EF = πh̄2n0/m is much larger than the thermal energy, and the phase state of the system is
determined by the ratioe2√πn0/(εEF ) ∝ 1/

√
n0, whereε is the dielectric constant. This

means that the solidification of the system caused by a strong magnetic field should start
from the edge where the electron density is smaller. Therefore in the quantum regime the
situation is inverse to that shown in figure 1. In this case we might have a 2D quantum
electron liquid surrounded by a thin solid strip. The appearance of this solid strip should
drastically affect the BDW mode due to the effective boundary conditionV (x)(x → 0) = 0
at the liquid–solid interface. We could expect the BDW to vanish in this case. At the same
time the rigid ‘wall’ of the solid strip imposes a sharp liquid density profile at the edge.
According to [3], the influence of the finite width of the edged on the EMP spectrum is
essential. In the long-wavelength limit|ky |d � 1,

ω = 2kyσyx
ε

[
ln

2

|ky |d − C + C1

]
(12)

whereC = 0.577. . . andC1 depends on the shape of the density profile. The result for
the sharp-density-profile approximation is obtained by making the following replacements
in equation (12):−C + C1→ 1, d → dB = 2π |σxx(ω)|/(εω). In the strong-field limit the
real density perturbation widthdB (xs < x 6 xs+dB) becomes much smaller thand, which
is not possible in the pure liquid state.

It should be emphasized that in real 2D electron systems it is very difficult to impose
rigid boundary conditions at the edge, since the total force acting on an electron at the edge
(the external force plus the force of the other electrons) should be zero. Therefore, in an
experiment one excites the in-phase motion of the EMP and BDW [8]. The appearance
of the solid strip at the edge might provide a unique possibility of suppressing one of the
modes (BDW) and of studying properties of the pure EMP mode under the sharp-density-
profile condition. This case is of the most interest if the bulk liquid state is close to an
incompressible quantum Hall state.

5. Conclusion and summary

We have investigated the edge phenomena of a 2D Wigner solid in the presence of the
magnetic field oriented normally. The analysis of the equations of motion of a 2D electron
solid shows that no conventional EMP can exist in the pure solid state of the electron
system. In the case of a movable boundary, new magneto-Rayleigh-wave solutions appear.
The magnetic field dependence of the MRW spectrum is analogous to that of the EMP, but
the MRW has a different dispersion and a much lower frequency.

In the case of the smooth electron density profile, the liquid–solid interface at the edge
appears differently in the classical and quantum melting regimes, which will crucially affect
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the propagation of the EMP and BDW in the liquid phase of the electron system. These
edge excitations can be used as an alternative probe of the Wigner solid.
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